Median Finding: Recursion

Wednesday, 23 August 2023

12:03 PM

returns
$$Z \in S$$
 s.t. Z is "approx - median":
2 is k^{th} smallest elt. for $\frac{n}{4} \leq k \leq \frac{3n}{4}$

Algo: Rank - Find (S, k):
let
$$n \leftarrow |S|$$

If $(n \leq 10)$
sort S
veturn k^{4h} Smalled alt.
 $z \leftarrow Approx - Splis(S) \leftarrow O(n)$
 $s^{L} \leftarrow \{x \in S : x \leq z\}, S^{P} \leftarrow \{x \in S : x > 2\} O(n)$
 $s \underbrace{\downarrow}_{n|u} \underbrace{\downarrow}_{s^{L}} \underbrace{\downarrow}_{n|u} \underbrace{\downarrow}_{s^{P}} \underbrace{\downarrow$

Time taken for
$$hank - Find$$
:
 $T_{RF}(n) = O(n) + T_{AS}(n) + T_{RF}(3n/4)$ (since $154, 1581 \le 3n/4$)
 $= O(n)$ (if Approx Split takes linear fime)

I/P: Array
$$S = (x_1, ..., x_n)$$
 of n distinct integers
 $O|P: ZES s.t. Z is kth smallest elt., where
 $n \in k \leq 3n$$

$$\frac{1}{4} \leq K \leq \frac{3n}{4}$$

Step 0: If
$$n \leq 60$$
, sort S, return median for
Step 1: Patition S into $\lceil n/5 \rceil$ averages, of Setts. Each,
except the last which has ≤ 5 etts.
Let $t = \lceil n \rceil$, ≤ 5 , 5 , \ldots , $5t$ are the diff.

$$T_{RF}(n) = O(n) + T_{AS}(n) + T_{PF}(3n/4)$$

= O(n) + T_{RF}(nls) + T_{RF}(3n/4)
= O(n) (prove 1)

PROBLEM 1: Modify algorithm to run even if numbers are
not distinct.
PROBLEM 2: Prove
$$T(n) = O(n) + T(n/s) + T(3n/4)$$

gives $T(n) = O(n)$