$\underset{\text { Wednessay, } 3 \text { 3 Augusut 2023: }}{\text { Median }}$

$$
\begin{aligned}
& \text { Easy: Sort } S, \text { rectiwn }[n / 2] \text { th smallest entry } \\
& \text { Talus time } O(n \log n)
\end{aligned}
$$

$$
\text { will give } O(n) \text { time algo for this, using recurtion }
$$

(Recussion is top-down. Induction is bottom-up)

$$
2 \text { ideas: (1) Stronge alpo: givie S: s.t. }|s|=n, \& k \leqslant n
$$

$$
\text { try \& find } k^{h} \text { smallest no, not just }
$$

(11) Approximale-Split: givin S, s.t. $|s|=n$, returns $z \in S$ s.t. 2 is "apporox - medion 2 is $k^{\text {th }}$ smallest elt. fo $\frac{n}{4} \leqslant k \leqslant \frac{3 n}{4}$

Algo: R Rank - Find (s, k) :
let $n \leftarrow \mid s$
If $(n \leqslant 10)$
retern $K^{\text {th }}$ smallett alt
$z \leftarrow \operatorname{Approx}-\operatorname{SpLit}(s) \leftarrow O(n)$
$s^{L} \leftarrow\{x \in S: x \leqslant 2\}, S^{R} \leftarrow\{x \in S: x>2\} \quad O(n)$

$\underbrace{$| n/4 |
| :--- |
| $\underbrace{2}$ |
| $\underbrace{2 n / 4}_{s^{2}}$ |
| i |}$_{s^{2}}$

$n^{2} \leftarrow\left|s^{2}\right|, n^{e} \leftarrow\left|s^{8}\right|$
If $\left(k \leqslant n^{2}\right)$

$$
\left.\begin{array}{l}
k \leftarrow R_{\text {ank }}-F_{\text {ind }}\left(S^{L}, k\right) \\
d x \\
d \leftarrow R \leftarrow R_{\text {ank }}-F_{\text {ind }}\left(s^{R} k-s^{2}\right)
\end{array}\right] T(3 n / 4)
$$

Return μ
Time taken for Rank- Find:
$T_{R F}(n)=O(n)+T_{R S}(n)+T_{R F}(3 n / 4) \quad\left(\sin u\left|S^{4} /,\left|S^{R}\right| \leq 3 n / 4\right)\right.$
$O(n)$ (if Approx Split talus lineer fine)

So, it remeins to implement Approx - Sput to rim in
limer time

$$
\begin{aligned}
& \text { I/P: Arrcy } \delta=\left(x_{1}, \ldots, x_{n}\right) \text { of } n \text { distinct inkegus } \\
& \frac{n}{4} \leqslant k \leqslant \frac{3 n}{4} \\
& \text { Step 1: Partition } S \text { into }[1 / 57 \text { arrayy } s \text {, of } S \text { ets. lach } \\
& \text { except the last which has } \leqslant 5 \text { etts. } \\
& \text { Let } t=\left[\frac{n}{s}\right] \text {, } s_{1}, s_{2}, \ldots, s_{t} \text { are the diff. } \\
& \text { Sets (not: not sorted !) } \leftarrow O(n) \\
& \text { Step 2: In each } s_{i} \text {, find medion } \mu_{i} \leftarrow O(n) \\
& \text { Step 3: Using earsior algo (Rank-Find }(S, k) \text {) find median (}\left[\left.\frac{t}{2}\right|^{\text {th }}\right. \\
& \begin{array}{lll}
H_{1} \ldots, H_{r} & (\text { seay 2) } \\
\text { Return } 2 & T_{R E}(n / s) & \text { smalest } \\
\text { elt.) }
\end{array}
\end{aligned}
$$

Chaim: $甘$ uts. in S smalle then 2 lier b/w $\frac{m}{4} \& \frac{3 n}{4}$
froof by pictere

\# elts with value $\leqslant 2$ is at least
$3 \times\left\lfloor\frac{t}{2}\right\rfloor \geqslant 3 \times\left(\frac{t}{2}-1\right)$
$\geqslant 3 \times\left(\frac{1}{2} \frac{n}{5}-1\right) \quad\left(\sin \mu t=\left\lceil\frac{n}{5} 7\right)\right.$ $\frac{3 n}{10}-3 \geqslant \frac{n}{4}$ for $n \geqslant 60$
\# elts. with value $\geqslant 2$ is at least $\frac{\eta}{4}$ for $n \geqslant 60$
Hence, 2 hes rark k. where $\frac{n}{4} \leqslant k \leqslant \frac{3 n}{4}$
Time Complexity
$T_{\text {AS }}(n)=O(n)+T_{\text {eF }}(n / 5)$
Oswan:
$T_{R F}(n)=O(n)+T_{\text {RS }}(n)+T_{\text {RF }}(3 n / 4)$

$$
\begin{aligned}
& O(n)+\operatorname{TRF}(n / 5)+\operatorname{T}_{R F}(3 n / 4) \\
& O(n) \quad(\text { prove ! })
\end{aligned}
$$

Problem 1: Modify algovithm to run even if numbers are
not distinct.
Problem 2: Prove $T(n)=O(n)+T(n / 5)+T(3 n / 4)$

